vDPA Live Migration Downtime Optimizations
for VirtlO Net Devices

NetDevConf 0x18

Dragos Tatulea <dtatulea@nvidia.com>
Eugenio Pérez Martin <eperezma@redhat.com>

Si-Wei Liu <si-wei.liu@oracle.com>

vDPA Live Migration Downtime
improvements for net devices

Sr. Software Engineer <eperezma@redhat.com> ‘

Eugenio Pérez Martin

Red Hat

Agenda

e Basic concepts
o SR-IOV
o Live Migration
e Problem: LM with passthrough VF
e Solution: virtio vDPA
e Cross-vendor VM Live Migration Demo
e Shadow virtqueue

Vendor passthrough / SR-IOV

Virtualized server

VM Live Migration

e WhatisLive Mlgr_atlon? | SRCHOST SSTHOST
e Process of moving a VM running on one
physical host to another while the guest OS / \ 4)
is running 4)

e The guestshouldn't realize the world is
changing beneath its feet

e Useful for load balancing, hardware /
software maintenance etc. % Y,

Virtual
Machine

VM Live Migration

e Whatis Live Migration?

e Process of moving a VM running on one
physical host to another while the guest OS
is running

e The guestshouldn't realize the world is
changing beneath its feet

e Useful for load balancing, hardware /
software maintenance etc.

How does it happen?
e Mark unsent (or modified) RAM as dirty

SRCHOST

/

~

-

_

~

Virtual
Machine

J

DSTHOST

/

~

VM Live Migration

e Whatis Live Migration?

Process of moving a VM running on one
physical host to another while the guest OS
is running

The guest shouldn't realize the world is
changing beneath its feet

Useful for load balancing, hardware /
software maintenance etc.

How does it happen?

Mark unsent (or modified) RAM as dirty
Send RAM content to the destination until a
threshold is reached.

SRCHOST

/

~

-

_

~

Virtual
Machine

J

DSTHOST

/

~

VM Live Migration

e Whatis Live Migration?

Process of moving a VM running on one
physical host to another while the guest OS
is running

The guest shouldn't realize the world is
changing beneath its feet

Useful for load balancing, hardware /
software maintenance etc.

e How does it happen?

Mark unsent (or modified) RAM as dirty
Send RAM content to the destination until a
threshold is reached.

Stop guest, transfer remaining dirty RAM,
device state

SRCHOST

/

~

-

_

~

Virtual
Machine

J

DSTHOST

/

~

-

Virtual
Machine

_

~

J

VM Live Migration

What is Live Migration?

Process of moving a VM running on one
physical host to another while the guest OS
is running

The guest shouldn't realize the world is
changing beneath its feet

Useful for load balancing, hardware /
software maintenance etc.

How does it happen?

Mark unsent (or modified) RAM as dirty
Send RAM content to the destination until a
threshold is reached.

Stop guest, transfer remaining dirty RAM,
device state

Resume execution on destination

SRCHOST

/

~

DSTHOST

/

~

-

-

Virtual
Machine

~

J

Live Migration: SR-IOV VF Passthrough

Requires identical
NIC HW on both
source and

destination host

o Tight coupling
between the
Guest SW and
Host HW

o Vendor's VF driver
required in the
Guest OS

Source Host

r \
Linux VM
Vendorl
_ driver)
4)
Hipervisor
_
VF h

\S

MIGRATE

Destination Host

(

Hipervisor

A VF

Vendor 2 NIC

\\

~

Virtual I/O Device (VIRTIO)

e Virtiois a specification that describes
virtual devices, drivers and how they
interact.

Virtual I/O Device (VIRTIO)

e Virtiois a specification that describes
virtual devices, drivers and how they
interact.

o Dataplane
m Virtqueues, implemented with
vrings: ring of buffers
descriptors
m Transfers the actual data

Not yet processed data

Write
position

|

Read
position

4 N

vring / virtqueue

Virtual I/O Device (VIRTIO)

e Virtiois a specification that describes
virtual devices, drivers and how they
interact.

o Dataplane
m Virtqueues, implemented with
vrings: ring of buffers
descriptors
m Transfers the actual data
o Control plane
m Manages the data plane
m Feature negotiation, shared
memory configuration...

Not yet processed data

Write
position

|

Read
position

4 N

vring / virtqueue

vDPA

Host

User
space %
= + = Kernel
virtio-net driver space
Libvirt
). QEMU
—_— process
A
H
E _: & Y
5 £t
E < 'E
Kemel i £
>
space o v KVM
g
£ VvDPA framework +
S VDPA vendor driver
A
£
2
84
2
Q
2
Y v
HW
blocks
VF

Physical NIC

Live Migration wit

e [ive migrationis
transparent

@)

Guest always talk with
virtio-net device,
irrespective of actual
vendor HW
Hypervisor doesn’t
require guest’s
collaboration.

n VDPA

Source Host

s

Linux VM

virtio-net
driver

(
Hypervisor

.
vendor 1
vdpa driver
_ J
(VF)
Vendor 1 NIC
N)/

Destination Host

-

~

Hypervisor '

4)
vendor 2
vdpa driver
_ J
r VE N
Vendor 2 NIC
\\)/

Live Migration wit

e [ive migrationis
transparent

©)

Guest always talk with
virtio-net device,
irrespective of actual
vendor HW
Hypervisor doesn’t
require guest'’s
collaboration.

n VDPA

Source Host

s

Linux VM

virtio-net
driver

~

g
Hypervisor
vendor 1
vdpa driver
_ J
4 VF)
_\)/

MIGRATE

Destination Host

-~

~

Hypervisor '

4)
vendor 2
vdpa driver
_ J
r VE N
Vendor 2 NIC
\\)/

Live Migration wit

e [ive migrationis
transparent

©)

Guest always talk with
virtio-net device,
irrespective of actual
vendor HW
Hypervisor doesn’t
require guest'’s
collaboration.

n VDPA

Source Host

-

~

4)
Hypervisor
vendor 1
vdpa driver
_ J
4 VF)
__)/

MIGRATE

Destination Host

-

Linux VM

virtio-net
driver

™

\.

(
Hypervisor

vdpa driver |

J
A\
vendor 2 J

J

VF

_)/

\

Demo scenario

Source host (dell750-28)

has two interesting NICs

o AMD Xilinx SN1022

o Mellanox ConnectX 6

(running iperf server)

Destination host (dell750-23)
has single interesting NIC

o Nvidia ConnectX 6
These NIC ports are
connected via Switch

Source Host

s

Linux VM

virtio-net
driver

(
Hypervisor

sfc

vdpa driver
\
NIC 2 VF |
port
port-s | | Xilinx NIC |

}M
i

Destination Host

J\ 4

~

nvidia
vdpa driver

\
Hypervisor

DEMO

https://www.youtube.com/watch?v=ocpwyiBkBBcC

Shadow virtqueue: Regular operation

driver
dirty
eeeeeeeeeeeee bitmap
model
Host Qem
User \ proc
@9 J
‘ out of gemu vdpa VF W

Shadow virtqueue: Regular operation

}\\

Shadow virtqueue: Regular operation

}\\

Shadow virtqueue: Regular operation

QEMU:

(G
o

c

-

o

=9

Qo

)

3

c

5 (v)
g —
<

il
O

Shadow virtqueue: Regular operation

}\\

Shadow virtqueue: Regular operation

}\\

Shadow virtqueue: Regular operation

}\\

Shadow virtqueue: Regular operation

}\\

Shadow virtqueue: Regular operation

}\\

YOV AR, 4 ¢

1

ORACLE

vDPA Live Migration Downtime

improvements for net devices
Netdev 0x18

Si-Wei Liu
<si-wel.liu@oracle.com>
Oracle Corporation

Copyright © 2024, Oracle and/or its affiliates 7/16/2014

Extend vDPA Infra to Cloud Scale

« Scale
- Hundred of Virtual Functions per card - VM use case
- Thousand of Scalable Functions per card - container use case
- Could support VM with high density of vDPA vNICs
- VM could go up to a couple of TBs in memory size and 100+ of vCPU cores

« Performance
- Should exceed para-virtualized vhost-kernel backend
- Should be comparable to SR-I0V passthrough: H/W offload required
- Micro-benchmarks: bandwidth, packet rate, latency, host cpu utilization

- Live Migration & Hypervisor (QEMU) Live Update
- Should keep 50% - 70% of 1/O performance during live migration
- Target sub-second latency (a few hundred milliseconds of blackout time) per VM
- Goal is to have per-device teardown & startup cost to be < 100 milliseconds!

2 Copyright © 2024, Oracle and/or its affiliates 7/16/2014

vDPA Live Migration - Overview of Challenges

- VDPA hardware device assisted dirty tracking?
- Hardware resource constraints: scalability bottleneck
- Highly contentious with host vCPU dirtying thread
- No intrinsic throttling on DMA, indirect throttling via hypervisor software as mitigation
- Performance optimization could be complex and vendor device dependent

« IOMMUED dirty tracking
- IOMMU dirty tracking only available in newer platforms

« Safe Harbor: Software Mediation via Shadow VirtQueue (SVQ)
- Implementation originated from software virtio-based backend
- Slow on real hardware device, could use some improvements
- Profiling on hardware backend: most costly part is on memory pinning (and mapping)
- Varied sources of latency on hardware device startup or teardown affecting downtime
- Some are vendor device specific: on-chip iommu mapping, virtqueue creation and setup
- Some are generally related to virtio spec conformance or vhost(-vdpa) plumbing

3 Copyright © 2024, Oracle and/or its affiliates 7/16/2014

Shadow VQ - Performance Potentials

« Move hardware slow path out of downtime!
- Device reset (slow) -> Suspend and Resume (relatively fast)
- SVQ translation cost -> Dedicated address space for SVQ descriptors
- DRIVER_OK setup cost at dest -> Move it ahead to device initialization? Iterative migration?
- UAPI: vhost-vdpa backend features
- Multiple CVQ cmd ioctls to restore device state -> Batch and streamline with io_uring?
- Multiple vhost-vdpa devices -> Parallelize migration with multi-threaded per-device teardown
- Participation and feedback from hardware vendors are more than welcomed!

« Further improve Shadow VQ datapath performance
- only forwards descriptor metadata rather than copy over memory buffers
- bandwidth throughput: could use multi-threaded SVQ
- lower down PCle transaction and cache utilization: packed ring

« Could be used to emulate other ring layout using virtio v1.0 spec compliant device
- legacy v0.9.5 device emulation due to lack of IOMMU platform feature

4 Copyright © 2024, Oracle and/or its affiliates 7/16/2014

NVIDIA.

vDPA Live Migration Downtime Optimizations
for VirtlO Net Devices

Dragos Tatulea (NVIDIA)
<dtatulea@nvidia.com>

NetDevConf Ox18

Live Migration Downtime

Live Migration

Live Migration ~ Switched to VM stopped VM resumed on

started on SVQ from on source host destination host:

source host passthrough Live Migration completed
mode

time

2 <ANVIDIA. I

Live Migration Downtime

‘ 0:00: |wmu 30 0

 vho..
vho.. | vho..
vho... I
o |

Downtime #1 Traffic Downtime #2
— 4 > < >
D N E T ETT T T T T ST T
[vhos._ vhos. |
vhos... vhos...
vhos...
| vhos...
Source VM |
i
Destination VM vhost_vdpa_chr_write_iter vho... vho.. vho..
vh... vhost_vdpa_process_iotlb_msg vho...| vho... vho..
N I i | i

3 &ANVIDIA I

L e
2
I=I Il a—==-

Unnecessary memory mappings/unmappings

vhost_vdpa_pa_unmap

Downtime Breakdown

Downtime #1

Shared memory mapping for both guest memory and Shadow VQ

Cost of tearing down and setting up hardware virtqueues

folio_mapping

E,
<

4 <ANVIDIA. I

Downtime Breakdown

Downtime #2

- Page pinning cost at device startup

- Create and set up hardware virtqueues

“=="ale..:<0E:00:E0

5 <ANVIDIA. I

Downtime Breakdown

Expensive operations for mix5_vdpa device
Memory mapping/unmapping
On chip IOMMU
Relative to map size
Virtqueue resource creation/deletion

Number of virtual queues

6 NVIDIA

Path to a Lower Downtime

Move operations out of downtime
Reduce operations in downtime

Make operations faster

7 NVIDIA

Early page pinning at device initialization

Page pinning done on destination after source device stops -> downtime
Send guest memory layout to destination during active period of live migration
Keep migration state on source until mappings on destination are done.

Mapping done on a separate thread to not block QMP.

8 NVIDIA

Descriptor group for SVQ ASID

Qemu, Kernel, Hardware

Virtqueue descriptors in own mapping
« Only descriptors -> much smaller maps

- Buffers in still in default map
New API for configuring descriptor virtqueues map in new ASID

Merged in mainline v6.7

+ mix5_vdpa: [PATCH vhost v4 00/16] vdpa: Add support for vg descriptor mappings

+ vdpa core: [PATCH RFC v2 0/3] vdpa: dedicated descriptor table group

Qemu:

« [PATCH 00/40] vdpa-net: improve migration downtime through descriptor ASID and persistent IOTLB

- Based on page pinning series.

9 <ANVIDIA I

Decouple map flush from device reset

vDPA device reset
Reset device state

Reset mapping
Map reset is not always necessary

New API:
reset(): does not reset map
reset_map(): resets only map

.compat_reset(): old behaviour

Merged in mainline v6.7:

10 NVIDIA

Resumable virtqueues

Qemu, kernel, hardware

SUSPEND + RESET (pre v6.8) SUSPEND + RESUME (v6.8)
« SUSPEND -> .suspend() * SUSPEND -> .suspend()

GET_VRING_BASE -> .get_vq_state()
RESET -> vdpa_reset() slow operation

Change ASID for SVQ descriptors
Restore device states » Change ASID for SVQ descriptors

 .set_config() — ¢« RESUME -> .resume()

+ .set_vring_addr()

« .set_vg_state()

« .set_vqg_ready()

« .set_status(DRIVER_OK) slow operation

- Merged in mainline v6.8: [PATCH vhost v5 0/8] vdpa/mlx5: Add support for resumable vgs

« Qemu Resumable VQs PoC - Upcoming

11 <ANVIDIA. I

Pre-create Virtqueues

Previously: Now:

All hardware virtqueue resources created on device start Initialize device with default state
(status DRIVER_OK)

Virtqueue configuration:
For many devices with many virtqueues, this adds up.

Fast, tracked on driver side.

Apply configuration to hardware

Slow path: non default queue size

Possible improvement: configurable default queue size

12

NVIDIA

Downtime Reduction Overview

« Benchmark VM:
o 128 GB RAM
o 8 CPUs

o 2 VDPA net devices, each with 4 data virtqueues

* Downtime measurements with mig_mon tool

* No hugepages

70

60

50

40

30

20

10

0

m Downtime #2
W Downtime #1

Baseline

62
5.5

Page Pinning

5.4
5.5

SVQASID + .reset iotlb
decoupling + map batching
1.55
0.4

resumable vgs

1.3
0.16

13 <EANVIDIA. I

Downtime Reduction Overview

Benchmark VM:
o 128 GB RAM
o 8 CPUs

o 2 VDPA net devices, each with 4 data virtqueues

Downtime measurements with mig_mon tool

No hugepages

VQ precreation: ~ 300 ms / device reduction

o 256 GB RAM VM, 64 vCPUs, 4 devices x 32 virtqueues

70

60

50

40

Seconds

30

20

10

Baseline Page Pinning
m Downtime #2 62 5.4
B Downtime #1 5.5 5.5

SVQASID + .reset iotlb
decoupling + map batching
1.55
0.4

resumable vgs

1.3
0.16

14 <INVIDIA I

Upcoming Improvements

Scaling Move work out of downtime #2
Parallel device operations Map memory ahead of time

Parallel VQ operations (device level)

Device configuration before downtime

15 NVIDIA

<X NVIDIA

Thank you

Questions?

