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physical host to another while the guest OS
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Useful for load balancing, hardware /
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e How does it happen?

Mark unsent (or modified) RAM as dirty
Send RAM content to the destination until a
threshold is reached.

Stop guest, transfer remaining dirty RAM,
device state
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VM Live Migration

What is Live Migration?

Process of moving a VM running on one
physical host to another while the guest OS
is running

The guest shouldn't realize the world is
changing beneath its feet

Useful for load balancing, hardware /
software maintenance etc.

How does it happen?

Mark unsent (or modified) RAM as dirty
Send RAM content to the destination until a
threshold is reached.

Stop guest, transfer remaining dirty RAM,
device state

Resume execution on destination

SRCHOST

/

~

DSTHOST

/

~

-

-

Virtual
Machine

~

J




Live Migration: SR-IOV VF Passthrough

Requires identical
NIC HW on both
source and

destination host

o Tight coupling
between the
Guest SW and
Host HW

o Vendor's VF driver
required in the
Guest OS
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Virtual I/O Device (VIRTIO)

e Virtiois a specification that describes
virtual devices, drivers and how they
interact.



Virtual I/O Device (VIRTIO)

e Virtiois a specification that describes
virtual devices, drivers and how they
interact.

o Dataplane
m Virtqueues, implemented with
vrings: ring of buffers
descriptors
m Transfers the actual data

Not yet processed data

Write
position

|

Read
position

4 N

vring / virtqueue




Virtual I/O Device (VIRTIO)

e Virtiois a specification that describes
virtual devices, drivers and how they
interact.

o Dataplane
m Virtqueues, implemented with
vrings: ring of buffers
descriptors
m Transfers the actual data
o Control plane
m Manages the data plane
m Feature negotiation, shared
memory configuration...

Not yet processed data

Write
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Read
position
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vring / virtqueue




vDPA
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Demo scenario

Source host (dell750-28)

has two interesting NICs

o AMD Xilinx SN1022

o Mellanox ConnectX 6

(running iperf server)

Destination host (dell750-23)
has single interesting NIC

o Nvidia ConnectX 6
These NIC ports are
connected via Switch
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DEMO



https://www.youtube.com/watch?v=ocpwyiBkBBcC




Shadow virtqueue: Regular operation
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Extend vDPA Infra to Cloud Scale

« Scale
- Hundred of Virtual Functions per card - VM use case
- Thousand of Scalable Functions per card - container use case
- Could support VM with high density of vDPA vNICs
- VM could go up to a couple of TBs in memory size and 100+ of vCPU cores

« Performance
- Should exceed para-virtualized vhost-kernel backend
- Should be comparable to SR-I0V passthrough: H/W offload required
- Micro-benchmarks: bandwidth, packet rate, latency, host cpu utilization

- Live Migration & Hypervisor (QEMU) Live Update
- Should keep 50% - 70% of 1/O performance during live migration
- Target sub-second latency (a few hundred milliseconds of blackout time) per VM
- Goal is to have per-device teardown & startup cost to be < 100 milliseconds!
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vDPA Live Migration - Overview of Challenges

- VDPA hardware device assisted dirty tracking?
- Hardware resource constraints: scalability bottleneck
- Highly contentious with host vCPU dirtying thread
- No intrinsic throttling on DMA, indirect throttling via hypervisor software as mitigation
- Performance optimization could be complex and vendor device dependent

« IOMMUED dirty tracking
- IOMMU dirty tracking only available in newer platforms

« Safe Harbor: Software Mediation via Shadow VirtQueue (SVQ)
- Implementation originated from software virtio-based backend
- Slow on real hardware device, could use some improvements
- Profiling on hardware backend: most costly part is on memory pinning (and mapping)
- Varied sources of latency on hardware device startup or teardown affecting downtime
- Some are vendor device specific: on-chip iommu mapping, virtqueue creation and setup
- Some are generally related to virtio spec conformance or vhost(-vdpa) plumbing
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Shadow VQ - Performance Potentials

« Move hardware slow path out of downtime!
- Device reset (slow) -> Suspend and Resume (relatively fast)
- SVQ translation cost -> Dedicated address space for SVQ descriptors
- DRIVER_OK setup cost at dest -> Move it ahead to device initialization? Iterative migration?
- UAPI: vhost-vdpa backend features
- Multiple CVQ cmd ioctls to restore device state -> Batch and streamline with io_uring?
- Multiple vhost-vdpa devices -> Parallelize migration with multi-threaded per-device teardown
- Participation and feedback from hardware vendors are more than welcomed!

« Further improve Shadow VQ datapath performance
- only forwards descriptor metadata rather than copy over memory buffers
- bandwidth throughput: could use multi-threaded SVQ
- lower down PCle transaction and cache utilization: packed ring

« Could be used to emulate other ring layout using virtio v1.0 spec compliant device
- legacy v0.9.5 device emulation due to lack of IOMMU platform feature
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Live Migration Downtime

Live Migration

Live Migration ~ Switched to VM stopped VM resumed on

started on SVQ from on source host destination host:

source host passthrough Live Migration completed
mode

time
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Live Migration Downtime
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Unnecessary memory mappings/unmappings

vhost_vdpa_pa_unmap

Downtime Breakdown

Downtime #1

Shared memory mapping for both guest memory and Shadow VQ

Cost of tearing down and setting up hardware virtqueues

folio_mapping
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Downtime Breakdown

Downtime #2

- Page pinning cost at device startup

- Create and set up hardware virtqueues
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Downtime Breakdown

Expensive operations for mix5_vdpa device
Memory mapping/unmapping
On chip IOMMU
Relative to map size
Virtqueue resource creation/deletion

Number of virtual queues
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Path to a Lower Downtime

Move operations out of downtime
Reduce operations in downtime

Make operations faster
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Early page pinning at device initialization

Page pinning done on destination after source device stops -> downtime
Send guest memory layout to destination during active period of live migration
Keep migration state on source until mappings on destination are done.

Mapping done on a separate thread to not block QMP.
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Descriptor group for SVQ ASID

Qemu, Kernel, Hardware

Virtqueue descriptors in own mapping
« Only descriptors -> much smaller maps

- Buffers in still in default map
New API for configuring descriptor virtqueues map in new ASID

Merged in mainline v6.7

+ mix5_vdpa: [PATCH vhost v4 00/16] vdpa: Add support for vg descriptor mappings

+ vdpa core: [PATCH RFC v2 0/3] vdpa: dedicated descriptor table group

Qemu:

« [PATCH 00/40] vdpa-net: improve migration downtime through descriptor ASID and persistent IOTLB

- Based on page pinning series.
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Decouple map flush from device reset

vDPA device reset
Reset device state

Reset mapping
Map reset is not always necessary

New API:
reset(): does not reset map
reset_map(): resets only map

.compat_reset(): old behaviour

Merged in mainline v6.7:
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Resumable virtqueues

Qemu, kernel, hardware

SUSPEND + RESET (pre v6.8) SUSPEND + RESUME (v6.8)
« SUSPEND -> .suspend() * SUSPEND -> .suspend()

GET_VRING_BASE -> .get_vq_state()
RESET -> vdpa_reset() slow operation

Change ASID for SVQ descriptors
Restore device states » Change ASID for SVQ descriptors

 .set_config() — ¢« RESUME -> .resume()

+ .set_vring_addr()

« .set_vg_state()

« .set_vqg_ready()

« .set_status(DRIVER_OK) slow operation

- Merged in mainline v6.8: [PATCH vhost v5 0/8] vdpa/mlx5: Add support for resumable vgs

« Qemu Resumable VQs PoC - Upcoming
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Pre-create Virtqueues

Previously: Now:

All hardware virtqueue resources created on device start Initialize device with default state
(status DRIVER_OK)

Virtqueue configuration:
For many devices with many virtqueues, this adds up.

Fast, tracked on driver side.

Apply configuration to hardware

Slow path: non default queue size

Possible improvement: configurable default queue size

12
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Downtime Reduction Overview

« Benchmark VM:
o 128 GB RAM
o 8 CPUs

o 2 VDPA net devices, each with 4 data virtqueues

* Downtime measurements with mig_mon tool

* No hugepages
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Downtime Reduction Overview

Benchmark VM:
o 128 GB RAM
o 8 CPUs

o 2 VDPA net devices, each with 4 data virtqueues

Downtime measurements with mig_mon tool

No hugepages

VQ precreation: ~ 300 ms / device reduction

o 256 GB RAM VM, 64 vCPUs, 4 devices x 32 virtqueues
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Upcoming Improvements

Scaling Move work out of downtime #2
Parallel device operations Map memory ahead of time

Parallel VQ operations (device level)

Device configuration before downtime
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Thank you

Questions?



